Higher Thermal Acclimation Potential of Respiration but Not Photosynthesis in Two Alpine Picea Taxa in Contrast to Two Lowland Congeners

نویسندگان

  • Xiao Wei Zhang
  • Jing Ru Wang
  • Ming Fei Ji
  • Richard Ian Milne
  • Ming Hao Wang
  • Jian-Quan Liu
  • Sheng Shi
  • Shu-Li Yang
  • Chang-Ming Zhao
چکیده

The members of the genus Picea form a dominant component in many alpine and boreal forests which are the major sink for atmospheric CO2. However, little is known about the growth response and acclimation of CO2 exchange characteristics to high temperature stress in Picea taxa from different altitudes. Gas exchange parameters and growth characteristics were recorded from four year old seedlings of two alpine (Picea likiangensis vars. rubescens and linzhiensis) and two lowland (P. koraiensis and P. meyeri) taxa. Seedlings were grown at moderate (25°C/15°C) and high (35°C/25°C) day/night temperatures, for four months. The approximated biomass increment (ΔD2H) for all taxa decreased under high temperature stress, associated with decreased photosynthesis and increased respiration. However, the two alpine taxa exhibited lower photosynthetic acclimation and higher respiratory acclimation than either lowland taxon. Moreover, higher leaf dry mass per unit area (LMA) and leaf nitrogen content per unit area (Narea), and a smaller change in the nitrogen use efficiency of photosynthesis (PNUE) for lowland taxa indicated that these maintained higher homeostasis of photosynthesis than alpine taxa. The higher respiration rates produced more energy for repair and maintenance biomass, especially for higher photosynthetic activity for lowland taxa, which causes lower respiratory acclimation. Thus, the changes of ΔD2H for alpine spruces were larger than that for lowland spruces. These results indicate that long term heat stress negatively impact on the growth of Picea seedlings, and alpine taxa are more affected than low altitude ones by high temperature stress. Hence the altitude ranges of Picea taxa should be taken into account when predicting changes to carbon fluxes in warmer conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Translational switching from growth to defense – a common role for TOR in plant and mammalian immunity?

Yamori W, Hikosaka K, Way DA. 2014. Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosynthesis Research 119, 101–117. Yamori W, Suzuki K, Noguchi K, Nakai M, Terashima I. 2006. Effects of Rubisco kinetics and Rubisco activation state on the temperature dependence of the photosynthetic rate in spinach leaves from contrasti...

متن کامل

Thermal acclimation of photosynthesis and respiration of southern and northern white spruce seed sources tested along a regional climatic gradient indicates limited potential to cope with temperature warming

Background and Aims Knowledge of thermal acclimation of physiological processes of boreal tree species is necessary to determine their ability to adapt to predicted global warming and reduce the uncertainty around the anticipated feedbacks of forest ecosystems and global carbon cycle to climate change. The objective of this work was to examine the extent of thermal acclimation of net photosynth...

متن کامل

Growth response and acclimation of CO2 exchange characteristics to elevated temperatures in tropical tree seedlings

Predictions of how tropical forests will respond to future climate change are constrained by the paucity of data on the performance of tropical species under elevated growth temperatures. In particular, little is known about the potential of tropical species to acclimate physiologically to future increases in temperature. Seedlings of 10 neo-tropical tree species from different functional group...

متن کامل

Thermal Acclimation of Respiration and Photosynthesis in the Marine Macroalga Gracilaria lemaneiformis (Gracilariales, Rhodophyta).

The responses of respiration and photosynthesis to temperature fluctuations in marine macroalgae have the potential to significantly affect coastal carbon fluxes and sequestration. In this study, the marine red macroalga Gracilaria lemaneiformis was cultured at three different temperatures (12, 19, and 26°C) and at high- and low-nitrogen (N) availability, to investigate the acclimation potentia...

متن کامل

Leaf Respiration in Light and Darkness (A Comparison of Slow- and Fast-Growing Poa Species).

We investigated whether leaf dark respiration (nonphotorespiratory mitochondrial CO2 release) is inhibited by light in several Poa species, and whether differences in light inhibition between the species are related to differences in the rate of leaf net photosynthesis. Four lowland (Poa annua L., Poa compressa L., Poa pratensis L., and Poa trivialis L.), one subalpine (Poa alpina L.), and two ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015